

위치	오류유형	수정 전	수정 후
		기존 용어 ●브롬산염류	수정 용어 ●브롬산염류 → <mark>브로민산염류</mark> ● S S E 사영로 → SIO S E 사영로
		●요오드산염류 ●과망간산염류 ●중크롬산염류 ●과요오드산염류 ●과요오드산 ●크롬, 납 또는 요오드의 산화물 ●염소화이소시아눌산 ●황화린	●요오드산염류 → 아이오딘산염류 ●과망간산염류 → 과망가니즈산염류 ●중크롬산염류 → 다이크로뮴산염류 ●과요오드산염류 → 과아이오딘산염류 ●과요오드산 → 과아이오딘산 ●크롬, 납 또는 요오드의 산화물 → 크로뮴, 납 또는 아이오딘의산화물 ●염소화이소시아눌산 → 염소화아이소사이아누르산 ●황화린 → 황화인
		● 당어리 유황 ● 클레오소트유 ● 질산에스테르류 ● 니트로화합물 ● 니트로소화합물 ● 디아조화합물 ● 히드라진유도체	●유황 → 황 ● 덩어리 유황 → 덩어리 황 ● 클레오소트유 → 크레오소트유 ● 질산에스테르류 → 질산에스터류 ● 니트로화합물 → 나이트로화합물 ● 니트로소화합물 → 나이트로소화합물 ● 디아조화합물 → 다이아조화합물 ● 히드라진유도체 → 하이드라진유도체 ● 히드록실아민 → 하이드록실아민 ● 히드록실아민염류 → 하이드록실아민염류 ● 디에틸에테르 → 다이에틸에터 ● 아세트알데히드 → 아세트알데하이드 ● 니트로벤젠 → 나이트로벤젠 ● 할로겐화합물 → 할로젠화합물
4~4p PART 04 최신기출복원문제 번호 : 02	문제-본문	수정 사유 02 가정에서 멀티탭을 문어발식으로 사용하고 있는 것을 그림으로 표현한 것이다. 허용전류가 15A인 4구형 멀티탭 220V 에 소비전력 1000W, 850W, 950W, 1500W의 전기기기가 연결되어 있다. 다음 물음에 답하시오. 전기다리미 소비전력 850W 소비전력 950W 오트로스터 소비전력 1500W	최신 개정법령 반영에 따른 용어 수정 02 가정에서 멀티탭을 문어발식으로 사용하고 있는 것을 그림으로 표현한 것이다. 허용전류가 15A인 4구형 멀티탭 220V에 소비전력 1100W, 850W, 950W, 1500W의 전기기기가 연결되어 있다. 다음 물음에 답하시오.
		^{220V} 말티탭 수정 사유	220V 원리존센트 본문 오류

위치	오류유형	수정 전	수정 후		
10~11p PART 04 최신기출복원문제 번호:11	청답	해설 ① 부동산(천 원) 계산과정: 신축단가 × 소실면적[1-(0.8×경과연수/내용연수]× 손해율이므로{1,000천 원/㎡×200㎡×[1-0.8× 10/50)]×100%}=16,800(천 원) 답: 16,800(천 원) ② 동산(천 원) 1층 계산과정: 공구 및 기구와 집기비품은 최종잔가율이 10%이므로 재구입비×[1-0.9×경과연수/내용연수)]×손해율을 계산하면 {250천 원×1대×[1-(0.9×5/6)]×100%}+{800천 원×1대×[1-(0.9×5/6)]×100%}+825(천 원) 답: 825(천 원) 2층 계산과정: 가재도구는 최종잔가율이 20%이므로 재구입비×[1-(0.8×경과연수/내용연수)]×손해율을 계산하면 {2,500천 원×1대×[1-(0.8×5/6)]×100%}+{1,820천 원×1대[1-(0.8×5/6)]×100%}=1,080(천 원) 답: 1,080(천 원)	해설 ① 부동산(천 원) 계산과정: 신축단가 × 소실면적[1-(0.8×경과연수/내용연수]× 손해율이므로{1,000천 원/㎡×200㎡×[1-0.8×10/50)]×100%}=168,000(천 원) 답: 168,000(천 원) ② 동산(천 원) 1층 계산과정: 공구 및 기구와 집기비품은 최종잔가율이 10%이므로 재구입비×[1-0.9×경과연수/내용연수)]×손해율을 계산하면 {2,500천 원×1대×[1-(0.9×5/6)]×100%}+{800천 원×1대×[1-(0.9×5/6)]×100%}=825(천 원) 답: 825(천 원) 2층 계산과정: 가재도구는 최종잔가율이 20%이므로 재구입비×[1-		
		수정 사유	정답 오류		
20~20p PART 04 최신기출복원문제 번호 : 14	정답	해답 2,034cal 줄열 = Q= $0.24I^2 \times R \times t[cal]$ Q= $0.24 \times (4)^2 \times 20 \times 30[Cal] = 2,034cal$	해답 2,304cal 줄열 = Q=0.24 $I^2 \times R \times t[cal]$ $Q=0.24 \times (4)^2 \times 20 \times 30[Cal] = 2,304cal$		
		수정 사유	정답 오류		
32~32p PART 03 기출복원문제 번호 : 17	해설	U형태는 훨씬 날카롭게 각이진 V형태와 유사하지만, 완만하게 굽은 경계선과 각이 있다기보다는 더 낮게 굽은 정상점을 보여줌	원형패턴 U패턴 U행태는 훨씬 날카롭게 각이진 V형태와 유사하지만, 완만하게 궁은 경계선과 각이 있다기보다는 더 낮게 궁은 정상점을 보여줌		
		수정 사유	해설 오류		

위치	오류유형	수정 전	수정 후	
37~37p PART 04 최신기출복원문제 번호 : 5	문제-그림	① 1 3 4 5 0 7 2 3 4 5 6 0 7 2 2 3 4 5 6 0 7 2 2 3 4 5 6 0 7 2 2 3 4 5 6 0 7 2 2 2 3 4	아마자 눈금	
		수정 사유	그림 오류	
45~45p PART 03 기출복원문제 번호 : 03	해설	03 표면적이 0.5㎡이고 표면온도가 300°C인 고온금속이 30°C의 공기 중에 노출되어 있다. 금속 표면에서 주위로의 대류열전달계수가 30kcal/m・hr・°C일 경우 금속의 발열량을 구하시오. 해답 4,050kcal/hr 해설 금속의 발열량	03 표면적이 0.5㎡이고 표면온도가 300°C인 고온금속이 30°C의 공기 중에 노출되어 있다. 금속 표면에서 주위로의 대류열전달계수가 30kcal/m·hr·°C일 경우 금속의 발열량을 구하시오. 해답 4,050kcal/hr 해설 금속의 발열량	
		수정 사유	해설 오류	
47~47p PART 03 기출복원문제 번호: 08		해답 ① 실내에서 화재가 발생하면 연소열에 의해 부력이 발생하므로 실의 상부는 실외보다 압력이 높고 하부는 압력이 낮다. 따라서 그 사이 어느 높이에는 실내와 실외의 압이 같아지는 경계가 형성되는데, 그 면을 중성대라 한다. ② 성장기	해답 ① 실내에서 화재가 발생하면 연소열에 의해 부력이 발생하므로 실의 상부는 실외보다 압력이 높고 하부는 압력이 낮다. 따라서 그 사이 어느 높이에는 실내와 실외의 압이 같아지는 경계가 형성되는데, 그 면을 중성대라 한다.	
		수정 사유	정답 오류	
57~57p 2016년 산업기사 기출복원문제 번호: 06	해설	해답 ① 내화, ⓒ 0.5m, ⓒ 높이, ⓒ 2.5m, ⑩ 갑종	해답 ① 내화, ⓒ 0.5m, ⓒ 높이, ② 2.5m, ② 60분+ 방화문 또는 60분 방화문	
		수정 사유	해설 오류	

위치	오류유형	수정 전	수정 후
71~71p PART 03 기출복원문제 번호 : 12	해설	해답 ② 부하(텔레비전, 컴퓨터의 전기를 소비하고 있는 쪽)에 가까운 쪽이 발화개소 측이므로 먼저 2구 콘센트 말단에 접속되어 있는 텔레비전에서 전기적인 단락이 일어나 발화가 되고, 컴퓨터 부하측에서 전기적 단락이 일어난 다음 전원측에서 단락이 일어난 것이다. 그 이유는 멀티콘센트의 전원부에 가까운 곳에 접속한 컴퓨터 부하측에서 먼저 발화하였다면 텔레비전 부하측에서는 단락흔이 발생하지 않았을 것이다. 해설 최초 화재가 발생한 A, B 지점 및 이유 분전반에서 분기된 전열회로는 벽면콘센트에 인가된 멀티콘센트에 B, C 전기기가 인가된 상태로 한정된 발화부위의 병렬회로상에서는 최종부하를 논단하기 불가하다. 다만, 지렬회로를 구성하는 경우 부하측에 단락이 생성하더라도 차단기가 동작하지 않을 시에는 전원측으로 전기적 특이점(단락 또는 합선)이 계속하여 생성되며, 최종 부하측 판단 발화부위를 축소할 수 있다.	해답 ① A 또는 B ② C와 A, C와 B는 직렬회로, A와 B는 병렬회로이다. A가 단락되더라도 C가 단락되기 전에는 B에서도 단락될 수 있고, B가 단락되더라도 C가 단락되기 전에는 A에서 단락될 수 있기 때문이다. 해설 콘센트(전원측) ○ ○ C
		수정 사유	해설 수정

위치	오류유형	수정 전	수정 후
122~123p PART 03 기출복원문제 번호: 08		해답 ① B ② 부하(텔레비전, 컴퓨터의 전기를 소비하고 있는 쪽)에 가까운 쪽이 발화개소 측이므로 먼저 2구 콘센트 말단에 접속되어 있는 텔레비전에서 전기적인 단락이 일어나 발화가 되고, 컴퓨터 부하측에서 전기적 단락이 일어난 다음 전원측에서 단락이 일어난 것이다. 그 이유는 멀티콘센트의 전원부에 가까운 곳에 접속한 컴퓨터 부하측에서 먼저 발화하였다면 텔레비전 부하측에서는 단락혼이 발생하지 않았을 것이다. 해설 최초 화재가 발생한 A, B 지점 및 이유 분전반에서 분기된 전열회로는 벽면콘센트에 인가된 멀티콘센트에 B, C 전기기가 인가된 상태로 한정된 발화부위의 병렬회로상에서는 최종부하를 논단하기 불가하다. 다만, 직렬회로를 구성하는 경우 부하측에 단락이 생성하더라도 차단기가 동작하지 않을 시에는 전원측으로 전기적 특이점(단락 또는 합선)이 계속하여 생성되며, 최종 부하측 판단 발화부위를 축소할 수 있다.	해답 ① A 또는 B ② C와 A, C와 B는 직렬회로, A와 B는 병렬회로이다. A가 단락되더라도 C가 단락되기 전에는 B에서도 단락될 수 있고, B가 단락되더라도 C가 단락되기 전에는 A에서 단락될 수 있기 때문이다. 해설 콘센트(전원측) ○ ○ C
		수정 사유	해설 수정

(2차 본본	위치	오류유형	수정 전	수정 후
	168~169p PART 03 기출복원문제	문제-본문	07 다음 그림을 보고 물음에 답하시오. □ 다음에 보여주는 화재형태 무엇인가? ② '①' 화채형태울 설명하시오. ③ 발화지정은? ④ 연소확대 순서는? (A, B, C, D) ⑤ 외부의 특이한 영향이 없을 경우 연소확대되는 속도비율을 쓰시오. 해답 ① V패턴 ② 발화지점에서 화염이 위로 올라가면서 밑면은 뾰족하고 위로 같수록 수평면으로 넓어지는 연소 형태이다. ③ A ④ A→B→C→D	07 다음 그림을 보고 물음에 답하시오. □ 다음에 보여주는 회사형태 무엇인가? □ '①' 항치역력을 설명하시오. □ 발가지용? ⑤ 연호되지용? ⑤ 연호되지용? ⑤ 연호되어 순사는 '(A, B, C) ⑤ 외부의 특이한 영향이 없을 경우 연소확대되는 속도비율을 쓰시오. 해답 ① V패턴 ② 발화지점에서 화염이 위로 올라가면서 밑면은 뾰족하고 위로 같수록 수평면으로 넓어지는 연소 형태이다. ③ A ④ A→B→C
수정 사유 문제 오류			수정 사유	문제 오류

위치	오류유형	수정 전	수정 후		
210~210p PART 03 기출복원문제 번호 : 09	해설	해답 ① B ② 부하(텔레비전, 컴퓨터의 전기를 소비하고 있는 쪽)에 가까운 쪽이 발화개소 측이므로 먼저 2구 콘센트 말단에 접속되어 있는 텔레비전에서 전기적인 단락이 일어나 발화가 되고, 컴퓨터 부하측에서 전기적 단락이 일어난 다음 전원측에서 단락이 일어난 것이다. 그 이유는 멀티콘센트의 전원부에 가까운 곳에 접속한 컴퓨터 부하측에서 먼저 발화하였다면 텔레비전 부하측에서는 단락흔이 발생하지 않았을 것이다.	해답 ① A 또는 B ② C와 A, C와 B는 직렬회로, A와 B는 병렬회로이다. A가 단락되더라도 C가 단락되기 전에는 B에서도 단락될 수 있고, 단락되더라도 C가 단락되기 전에는 A에서 단락될 수 있기 때문이다.		
		수정 사유	 해설 수정 		
234~234p PART 03 기출복원문제 번호: 11	해설	해답 ① B ② 부하(텔레비전, 컴퓨터의 전기를 소비하고 있는 쪽)에 가까운 쪽이 발화개소 측이므로 먼저 2구 콘센트 말단에 접속되어 있는 텔레비전에서 전기적인 단락이 일어나 발화가 되고, 컴퓨터 부하측에서 전기적 단락이 일어난 다음 전원측에서 단락이 일어난 것이다. 그 이유는 멀티콘센트의 전원부에 가까운 곳에 접속한 컴퓨터 부하측에서 먼저 발화하였다면 텔레비전 부하측에서는 단락흔이 발생하지 않았을 것이다. 해설 최초 화재가 발생한 A, B 지점 및 이유 분전반에서 분기된 전열회로는 벽면콘센트에 인가된 멀티콘센트에 B, C 전기기기가 인가된 상태로 한정된 발화부위의 병렬회로상에서는 최종부하를 논단하기 불가하다. 다만, 직렬회로를 구성하는 경우 부하측에 단락이 생성하더라도 차단기가 동작하지 않을 시에는 전원측으로 전기적 특이점(단락 또는 합선)이 계속하여 생성되며, 최종 부하측 판단 발화부위를 축소할 수 있다.	해답 ① A 또는 B ② C와 A, C와 B는 직렬회로, A와 B는 병렬회로이다. A가 단락되더라도 C가 단락되기 전에는 B에서도 단락될 수 있고, B가 단락되더라도 C가 단락되기 전에는 A에서 단락될 수 있기 때문이다. 해설 콘센트(전원측) ② C #하측 TV 해설		
		수정 사유	해설 수정		

위치	오류유형	수정 전	수정 후	
235~235p 2022년 2회 기사 기출복원문제 번호 : 12	해설	12번 해설 ● 누전화재의 3요소 : 누전이란 절연이 불량하여 전류의 일부가 전류의 통로로 설계된 이외의 곳으로 흐르는 현상 - 누전점 : 전류가 흘러들어오는 곳(빗물받이) - 출화점(발화점) : 과열개소(함석판) - 접지점 : 접지물로 전기가 흘러들어 오는 점 ● 영상변류기 : 누전차단기에서 누설전류를 감지하는 장치	12번 해설 ● 누전화재의 3요소 : 누전이란 절연이 불량하여 전류의 일·전류의 통로로 설계된 이외의 곳으로 흐르는 현상 - 누전점 : 전류가 흘러들어오는 곳(빗물받이) - 출화점 : 누설전류가 흐르면서 열이 축적되 발화한 곳(라스모스타르) - 접지점 : 접지물로 전기가 흘러들어 오는 점 ● 영상변류기 : 누전차단기에서 누설전류를 감지하는 장치	
		수정 사유	해설 오류	
241~241p PART 03 기출복원문제 번호 : 11	해설		해답 ① A 또는 B ② C와 A, C와 B는 직렬회로, A와 B는 병렬회로이다. A가 단락되더라도 C가 단락되기 전에는 B에서도 단락될 수 있고, B가 단락되더라도 C가 단락되기 전에는 A에서 단락될 수 있기 때문이다. 해설 콘센트(전원측) ② ○ C B ② C A F TV	
		수정 사유	해설 수정	

위치	오류유형		수정 전		수정 후		
256~256p PART 03 기출복원문제 번호 : 01	해답 ① A 또는 B 해답 ② C와 A, C와 B는 직렬회로, A와 B는 단락되더라도 C가 단락되기 전에는 B여 ② 부하(텔레비전, 컴퓨터의 전기를 소비하고 있는 쪽)에 가까운 쪽이 발화개소 측이므로 먼저 2구 콘센트 말단에 접속되어 있는 텔레비전에서 전기적인 단락이 일어나 발화가 되고, 컴퓨터 부하측에서 전기적 단락이 일어난 다음 전원측에서 단락이 일어난 해설		B CO A				
			수정 사유	히	배설 수정		
287~287p (8) 가재도구의 피해액 산정	개념,공식-설명	피해액 산정방식 실질적 · 구체적 방식 간이평가방식 수리비에 의한 방식	산정기준 재구입비잔가율손해율 재구입비[1-(0. 9경과연수/내용연수)] 손해율 평가항목별 기준액에 가중치를 곱한 후 모두합산한 금액으로 한다. [(주택 종류별·상태별 기준액가중치) + (주택 면적별 기준액가중치) + (거주인원 별기준액가중치) + (주택가중(㎡당)별기준액가중치)]손해율 수리비[1-(0. 9경과연수/내용연수)] 수리비[가 공구·기구 재구입비의20%미만인경우에는 감가공제를하지 아니한다.전문업자의 견적서를 토대로하되, 2곳이상의 업체로부터 받은 견적금액을평균하여 수리비용으로 산정한다. 중고 집기비품으로서 제작년도를 알 수 없는경우:신품 재구입비의30~50%중고품 가격이 신품가격보다 비싼 경우:	۱ŀ	방식 간이평가방식 수리비에 의한 방식 특수한 경우의	산정기준 재구입비잔가율손해율 재구입비[1-(0.8경과연수/내용연수)]손해율 평가항목별 기준액에 가중치를 곱한 후 모두합산한 금액으로 한다. [(주택 종류별·상태별 기준액가중치) + (주택면적별 기준액가중치) + (거주 인원 별 기준액가중치) + (주택가경(㎡당)별 기준액가중치)] 손해율 수리비[1-(0.8경과연수/내용연수)] 수리비가 공구·기구 재구입비의20%미만인경우에는 감가공제를 하지 아니한다.전문업자의 견적서를 토대로 하되, 2곳 이상의업체로부터 받은 견적금액을 평균하여수리비용으로 산정한다. 중고 집기비품으로서 제작년도를 알 수 없는경우:신품 재구입비의30~50%	
		산정방식	신품가격 중고품 가격이 신품가격에서 감가공제를 한 금액보다 낮을 경우:중고품 가격 수정 사유		산정방식 표 이론 오류	신품가격 중고품 가격이 신품가격에서 감가공제를 한 금액보다 낮을 경우:중고품 가격	

도서의 오류로 학습에 불편드린 점 진심으로 사과드립니다. 더 나은 도서를 만들기 위해 노력하는 시대교육그룹이 되겠습니다.